29 research outputs found

    Nuclearity and Thermal States in Conformal Field Theory

    Full text link
    We introduce a new type of spectral density condition, that we call L^2-nuclearity. One formulation concerns lowest weight unitary representations of SL(2,R) and turns out to be equivalent to the existence of characters. A second formulation concerns inclusions of local observable von Neumann algebras in Quantum Field Theory. We show the two formulations to agree in chiral Conformal QFT and, starting from the trace class condition for the semigroup generated by the conformal Hamiltonian L_0, we infer and naturally estimate the Buchholz-Wichmann nuclearity condition and the (distal) split property. As a corollary, if L_0 is log-elliptic, the Buchholz-Junglas set up is realized and so there exists a beta-KMS state for the translation dynamics on the net of C*-algebras for every inverse temperature beta>0. We include further discussions on higher dimensional spacetimes. In particular, we verify that L^2-nuclearity is satisfied for the scalar, massless Klein-Gordon field.Comment: 37 pages, minor correction

    Bohrification of operator algebras and quantum logic

    Get PDF
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n-by-n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the "Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of functors from C(A) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns-Lakser completions. Finally, we establish a connection between probability measure on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of A for A = B(H).Comment: 31 page

    New Concepts in Particle Physics from Solution of an Old Problem

    Full text link
    Recent ideas on modular localization in local quantum physics are used to clarify the relation between on- and off-shell quantities in particle physics; in particular the relation between on-shell crossing symmetry and off-shell Einstein causality. Among the collateral results of this new nonperturbative approach are profound relations between crossing symmetry of particle physics and Hawking-Unruh like thermal aspects (KMS property, entropy attached to horizons) of quantum matter behind causal horizons, aspects which hitherto were exclusively related with Killing horizons in curved spacetime rather than with localization aspects in Minkowski space particle physics. The scope of this modular framework is amazingly wide and ranges from providing a conceptual basis for the d=1+1 bootstrap-formfactor program for factorizable d=1+1 models to a decomposition theory of QFT's in terms of a finite collection of unitarily equivalent chiral conformal theories placed a specified relative position within a common Hilbert space (in d=1+1 a holographic relation and in higher dimensions more like a scanning). The new framework gives a spacetime interpretation to the Zamolodchikov-Faddeev algebra and explains its thermal aspects.Comment: In this form it will appear in JPA Math Gen, 47 pages tcilate

    CANONICAL EXTENSIONS OF SYMMETRIC LINEAR RELATIONS

    No full text
    The concept of canonical extension of Hermitian operators has been recently introduced by A. Kuzhel. This paper deals with a generalization of this notion to the case of symmetric linear relations. Namely, canonical regular extensions of symmetric linear relations in Hilbert spaces are studied. The main result is a characterization of canonical regular extensions in terms of a von-Neumann like formula
    corecore